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Abstract

Tissue banking programs fail to meet the demand for human organs and tissues for transplanta-
tion into patients with congenital defects, injuries, chronic diseases, and end-stage organ failure.
Tendons and ligaments are among the most frequently ruptured and/or worn-out body tissues
owing to their frequent use, especially in athletes and the elderly population. Surgical repair has
remained the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and reduces the quality
of life for patients. Tissue engineering and regenerative medicine approaches, such as tendon
augmentation, are promising as they may provide superior outcomes by inducing host-tissue
ingrowth and tendon regeneration during degradation, thereby decreasing failure rates and mor-
bidity. However, to date, tendon tissue engineering and regeneration research has been limited
and lacks the much-needed human clinical evidence to translate most laboratory augmentation
approaches to therapeutics. This narrative review summarizes the current treatment options for
various tendon pathologies, future of tendon augmentation, cell therapy, gene therapy, 3D/4D
bioprinting, scaffolding, and cell signals.
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Introduction to tissue
engineering and regenerative
medicine (TERM)

In recent years, advances in biomedical
research have produced significant mile-
stones in new drug discovery, medical
devices, and clinical procedures. One break-
through of biomedical research advance-
ments in the past three decades was the
emergence of TERM. The intention of this
field is based on the idea that tissue and
organ reconstruction can restore patient’s
normal lives after organ loss/injury. The
terms tissue engineering (TE) and regenera-
tive medicine (RM) are typically used sepa-
rately and interchangeably to mean one
thing (TERM), although there is a marked
difference in the technicalities of the fields.
TE focuses more on creating in vitro bio-
artificial tissues or cellular products to
repair tissues within the body and involves
in vivo alteration of cell growth and func-
tion through the implantation of suitable
cells isolated from donor tissue and bio-
compatible scaffold materials.' In contrast,
RM focuses on endogenous tissue forma-
tion.”> The three most important compo-
nents of TERM are biomaterials, cells,
and signals.?

Although a well-defined field (TERM)
has recently been developed, its foundation
can be traced back to the year 300 BC in
Indian writings that described skin grafting
in Sanskrit texts.* TERM became recog-
nized in the mid-1950s when the first
kidney transplant between identical twin

brothers was successfully performed.’ The
field aims to solve problems related to
diverse backgrounds, such as acute or
chronic degenerative diseases, trauma,
aging, and congenital defects, and hence
overlaps with other disciplines, including
biomaterials, nanotechnology, stem cell
biology, developmental biology, engineer-
ing, and medicine.® In the field of medicine,
orthopedics has greatly benefited from
the technological evolution of TERM.
However, to date, tendon TE and regener-
ation research has been limited and lacks
the much-needed human clinical evidence
to translate most laboratory augmentation
approaches to therapeutics. Previous review
articles”'* have also performed a similar
review; however, the current study con-
ducted an extensive review of current liter-
ature to help with the limited translation of
tendon augmentation in clinical practice
and provide a better understanding of
tendon repair in TERM.

Search strategy

A review of published articles on tendon
augmentation was performed. Scientific lit-
erature was searched in relevant databases
(Google Scholar, Scopus, PubMed, and
Web of Science) using the terms “(regener-
ative medicine) AND (tissue engineering)
AND (tendon repair OR tendon augmenta-
tion) AND (bio-fabrication)”. The search
was conducted with publication language
restricted to English. The titles of articles
were reviewed, followed by the abstracts
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and full texts. After the removal of dupli-
cates and unrelated papers, 96 articles were
used in this narrative review. This article
does not contain any studies with human
participants or animals performed by any
of the authors. Therefore, ethical approval
and informed patient consent were not
required.

TE in tendon/ligament
augmentation
TE research in tendon augmentation inten-

sified in the early 1980s, resulting in the first
commercial product Gore-Tex Cruciate

Ligament prosthesis (WL Gore and
Associates, Newark, DE, USA) being
approved by the Food and Drug
Administration (FDA) on 10 October

1986.'* Since 1986, more commercial prod-
ucts have been approved, mostly in the
USA by the FDA but also in Europe and
across the world. Commercial augmenta-
tion products are being developed for the
increased tendon injury burden from work-
places and age-related conditions, with
approximately 30% to 50% of sports inju-
ries involving tendon injuries.'> Currently,
surgical repair remains the gold standard
treatment for tendon/ligament rupture.
However, the healing process is naturally
lengthy relative to that of other soft tis-
sues.'""'® This is partly because tendons
are tissues of high activity with a poor
blood supply, supporting fundamental loco-
motion of the body. As a result, they are
highly prone to healing failure, thereby
increasing morbidity and additional treat-
ment costs and placing an economic burden
on patients and health systems.'!>!7
TERM approaches have been studied
and proposed as promising alternatives to
improve the quality of tendon healing.'®""
The fields of engineering, nanotechnology,
molecular biology, and materials science
are used alone or in combination with

cells, scaffolds, and bioactive molecules in
various TERM approaches.'> Despite
showing great potential, tendon argumenta-
tion suffers from limited evidence in the
literature to support the clinical use of var-
ious scaffold biomaterials.”’ This is partly
because there is a poor understanding of the
basic biology of tendon development, signal
transduction, mechanotransduction, and
mechanisms underlying tendon pathogenesis
and healing and limited translational animal
models and well-designed preclinical studies,
all because there are only a few researchers
working in this area.?'

Tendon development, histology,
and physiology

Tendons together with muscle, muscle con-
nective tissue, ligament, bone, nerves, and
blood vessels are part of the musculoskele-
tal system, which is vital for structural sup-
port, locomotion, and movement.?%?” The
main function of tendons is to join muscles
to bones and transfer forces necessary for
movement.”® The embryological derivative
of tendons is the ectoderm.? Tenocytes are
mature tenoblasts found in the tendon that
were previously thought to be the only res-
ident cells before the discovery of tendon
stem cells (TSCs).>° Tenocytes and teno-
blasts represent nearly 90% to 95% of the
cells within the tendon, with the other 5%
to 10% consisting of chondrocytes, synovi-
al cells, and vascular cells.?!

Tenocytes and tenoblasts are specialized
fibrocytes and fibroblasts, respectively, that
secrete extracellular matrices, such as colla-
gen, proteoglycans, and other proteins.’!
Tenocytes control the repair, maintenance,
and turnover of the extracellular matrix in
response to external stimuli and stress.”’
Tendons are mainly composed of collagen,
which accounts for 70% to 80% of their dry
weight, including 95% type 1 collagen and
5% type 3 collagen present in the
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epitenonium and endotenonium.** Tendons
have collagen fibrils that bundle to make
collagen fibers, forming fascicles, and bun-
dles of fascicles from the fascicular matrix.
Endotendon contains blood vessels, lym-
phatics, and nerves, and its outward contin-
uation forms the epitenon, a synovial-like
membrane that prevents adhesion of the
tendon to other adjacent tissues.™

TSCs are in some ways different from
tenocytes, including differences in cell
marker expression, proliferative and differ-
entiation potential, and morphology.*
TSCs differentiate into adipocytes, chon-
drocytes, and osteocytes in vitro and form
tendon-, cartilage-, and bone-like tissues
in vivo.>* The study by Zhang J et al.
showed that low mechanical stretching at
4% stimulated the differentiation of
TSCs into tenocytes, whereas stretching
at 8% induced the differentiation of a
sub-population of TSCs into adipogenic,
chondrogenic, and osteogenic lineages.**
Therefore, understanding the mechanobiol-
ogy of TSCs can potentially improve the
effective repair or regeneration of injured
tendons.

The microstructure of tendons also com-
prises connective tissue tendon sheaths,
fibrous sheaths, synovial sheaths, periten-
don sheaths (paratenon), reflection pulleys,
and tendon bursae. These structures are
specialized to enhance tendon efficiency by
improving the sliding motion of the tendon
tissue, reducing friction with neighboring
anatomical structures, and preventing the
tendon from losing its course of action
during muscle contraction.*

Tendon pathologies and current
approaches to management

A summary of the management of tendon
pathologies is shown in Table 1. Tendon
injuries remain a significant cause of both
work-related and sport-related injuries.'’

The repair of tendon injuries is a lengthy
process that frequently results in a poor
structural, mechanical, and functional qual-
ity of the healed tissue. At present, the clin-
ical options for treating tendon injuries are
often unsatisfactory, especially in elderly
populations.*”

Novel methods used in tendon
augmentation

Gene therapy

In the TE of tendons, genetic vector trans-
fer is used as a biological delivery system to
deliver the encoded gene products to the
site of pathology to promote the local
repair and regeneration of damaged tis-
sues.*> %" % Identifying and transferring
genes into a local cell, resulting in the trans-
lation of the gene into specific protein-like
growth factors, is the basis of this
approach. Growth factors, such as vascular
endothelial growth factor (VEGF), growth
differentiation factor-5, platelet-derived
growth factor-b (PDGF-b), and insulin-
like growth factor-1 (IFG-1), are among
the previously studied growth factors, and
their effects have been characterized in local
tendon cells.”” Localized gene transfer
allows focal post-translational protein syn-
thesis, which leads to greater biological
activity and a reduced risk of activating
immune reactions.>> Because of poor blood
supply to joint structures, such as tendons, it
is difficult to deliver therapeutics intrave-
nously, intramuscularly, and orally without
exposing the body systemically to the thera-
peutic agent. Therefore, local delivery meth-
ods, such as gene transfer, prove to be more
advantageous.”"’? An additional benefit of
using a gene-therapy, tissue-engineered
approach to affect tendon healing is that it
allows the physician to select specific growth
factors in the tendon-healing cascade from
well-documented sources.”
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Continued.

Table I.

Potential management options

Current management

Description

Disease/etiology

Topical nitrates ©'

Physiotherapy, surgical treatment,”’

Pathology of the attachment site of

Enthesopathy

platelet-rich plasma®®

tendon to the bone, tenderness,

swelling at the site of attachment to

bone, and pain. Example: Achilles
Joint contracture with hardening of the

CCH injection, percutaneous needle

Stretching, positioning, and splinting in

Contracture

fasciotomy®*¢¢

addition to orthopedic surgical

intervention®>%3

tendon sheath and attachment of it

to the surrounding tissues

Mesenchymal stem cells (MSC), tendon-derived stem cells (TDSCs), I-lactic acid-co-¢-caprolactone (poly(LLA-CL)/Col), collagenase clostridium histolyticum (CCH),

platelet-rich plasma (PRP), non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying antirheumatic drugs (DMARDs).

An alternative novel approach to using
pure vectors is the application of gene-
modified sutures, as demonstrated by
Zhou et al.”® Plasmids, such as pEGFP-
bFGF, are loaded onto nanoparticles to
form nanoparticle/plasmid complexes, and
then the complexes are attached to the sur-
face of polydopamine-modified sutures to
prepare nanoparticle/plasmid complex-
coated sutures, which are then used for
tendon repair to promote tendon healing.
The outcome of their study showed that
gene-modified sutures (nanoparticle/
pEGFP-bFGF and pEGFP-VEGFA com-
plex-coated) improved tendon healing by
increasing tendon healing strengths,
enhancing gliding function, and inhibiting
adhesion formation without adverse effects
on host tissues.”® Table 2 summarizes stud-
ies on novel methods applied in tendon
management.

Cell therapy

Cells are among the three pillar components
of TERM. Stem cells, sometimes called
“medicinal stem cells,” work effectively
as growth factor factories or drugstores
in vivo.”> Stem cells can repopulate the
injured tissue and stimulate the body’s heal-
ing properties. In tendon TE, tenocytes,
TSCs, bone marrow-derived mesenchymal
stem cells, MSCs, pluripotent stem cells,
and embryonic stem cells are the most com-
monly used and most promising. The cur-
rent problems faced in TE cell therapy are
the identification and extraction of these
cells and the identification of cell markers
to easily manipulate them for a better
understanding of tendon pathophysiology.
A 2010 study reported that TSCs differed
from tenocytes in morphology in culture,
proliferative potential, stem cell marker
expression, and differentiation potential.*
The application of undifferentiated stem
cells for the repair of tendon injuries, such
as bone marrow-derived mesenchymal stem
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cells (MSCs), adipose tissue-derived MSCs,
embryonic stem cells, embryonic stem-like
cells, adipose-derived nucleated cells,
umbilical cord blood-derived MSCs, and
peripheral  blood-derived mesenchymal
stem cells, has been well characterized.”®
Furthermore, the author mentions that
MSCs used in tendon regeneration have
the potential to recruit other MSCs or pro-
genitor cells to the injury site by producing
a variety of cytokines and paracrine factors,

thereby improving the regeneration
potential.
Challenges with cell therapy mainly

include the efficacy evaluation of MSC ther-
apy, which is subject to the use of appropri-
ate control groups, severity and size of the
lesion, time between injury and implanta-
tion, number of stem cells for implantation,
models of tendinopathy (e.g., collagenase or
surgical disruption), and opting for single or
multiple injections.”®

Signals: growth factors and cytokines

Growth factors are signaling molecules that
induce cell chemotaxis, proliferation,
matrix synthesis, and cell differentiation in
normal and pathophysiological conditions,
such as growth, healing, and repair.'' The
regulation of these signals during tendon
injury repair is of great importance, espe-
cially in controlling the amount of scar
tissue production. Extensive scar tissue at
the healing attachment site may predispose
patients to impingement post-operatively.
Important factors to consider when
adding growth factors to cell culture
media to trigger tenogenic differentiation
are incubation time and cell type. In clinical
scenarios, several modes for the delivery of
growth factors to the injury site can be
applied, including direct local injection
and the use of impregnated sutures or scaf-
folds. Impregnated sutures or scaffolds are
better at delivering growth factors to the
specific area of injury without the overflow

loss associated with local injection.
However, local injection is comparatively
non-invasive, simple, and quick, although
growth factors delivered in this way only
remain at the site for a short duration.'!

IGF, transforming growth factor Sl
(TGF-p1), and cartilage-derived morphoge-
netic protein growth factor-1, -2, and -3 are
equivalent to human bone morphogenic
protein (BMP)-14, -13, and -12. PDGF, epi-
dermal growth factor, platelet-rich plasma,
VEGF, interleukin-10, recombinant human
osteogenic protein-1, connective tissue
growth factor, fibroblast growth factor
(FGF), and recombinant human growth
differentiation factor have all been charac-
terized in terms of their roles in tendon
injury repair.

In several studies, PDGF-stimulated
DNA and matrix synthesis in tendon
cells'""'* increased the expression of cell sur-
face integrins, which play critical roles in
tendon repair.”> IGF-1 also enhances heal-
ing by increasing DNA, collagen, and gly-
cosaminoglycan production. In vitro and in
vivo studies have elucidated the ability of
IGF-1 to decrease swelling and simulta-
neously increase cell proliferation, collagen
synthesis, and DNA content.”” FGF2 is
among the most promising cell signals
in tendon augmentation and has been
widely reported to increase tendon/ligament
revascularization, cell proliferation, and
collagen production and stimulate new
bone formation, accelerating tendon-
to-bone healing ®*97-%%

Scaffolding

According to Mota et al., a scaffold is a
material that functions as a provisional
template for the interactive trafficking of
cells and the creation of the extracellular
matrix, offering structural support for the
freshly made tissue.** Tendon scaffolding
material comes in three main forms: biolog-
ical, synthetic, and composite.33 Table 3
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compares the types, sources, strengths, and
weaknesses of scaffolding material used in
tendon augmentation.

Regardless of the type, an effective
scaffold should have appropriate biocom-
patibility, biodegradability, biokinetics,
porosity, and biomechanical properties
close to the target natural tissue’s prede-
fined geometry and size.** From Table 3,
it is clear that all three forms of scaffolds
have strengths and weaknesses. Synthetics
have a great deal of versatility and high
mechanical strength and hold a greater
potential for high-volume industrial pro-
duction than others.'® However, synthetic
scaffolds are relatively immunogenic, have
low hydrophilic properties, and lack suffi-
cient cell adhesive properties. Biologic scaf-
folds are harvested from mammalian tissues,
such as human, porcine, bovine, and equine,
and are the most studied type of scaffold-
ing.'”" Biologics have adequate cell adhesion
properties, low immunogenicity, and high
hydrophilicity, although their mechanical
strength is the lowest. Composite scaffolding
attempts to combine the advantages of bio-
logical and synthetic scaffolds, offering
improved  biocompatibility and lower
degradability; however, its mechanical prop-
erties still present a challenge.'

The ideal augmenting scaffold would be
able to stimulate endogenous tendon tissue
regeneration during degradation and reduce
in vivo mechanical forces on tendon repair
during post-operative healing. Biologics
(extracellular matrices) have great potential
in achieving this; however, current clinical
evidence is limited because there are only a
few well-conducted human studies in this
area.''?" Table 4 describes the in vivo and
in vitro laboratory studies on scaffolding
materials in tendon augmentation.

Nanotechnology in tendon augmentation

The National Science Foundation defines
nanotechnology as “the ability to

understand, control, and manipulate matter
at the level of individual atoms and mole-
cules, as well as at the “supramolecular”
level involving clusters of molecules (in the
range of about 0.1 to 100nm) to create
materials, devices, and systems with funda-
mentally new properties and functions
because of their small structure”.'” In
nanomedicine, new advancements in nano-
adjuvants, NanoKnife, oncology, orthope-
dic drug delivery, implantable materials,
vertebral disk regeneration, and diagnostic
modalities have been described and currently
hold a promising future in TERM_ 46107109

The use of nanomedicine in tendon
regeneration and repair is related to the
individual physicochemical properties of
particles and holds promise for improving
extrinsic and intrinsic tendon healing with
less adhesion compared with post-
surgical adhesion.*®"'® Nanofibers, such
as Poly (caprolactone)-Based Nanofiber
Electrospun Scaffolds, have shown promis-
ing results in various tissue regeneration
applications in bone, cartilage, skin,
tendon, ligament, and nerve.!!! Silver nano-
particles (AgNPs) are among the most
widely used nanoparticles because they
have anti-microbial and anti-adhesion
effects, modulate the extracellular matrix
composition, and promote the proliferation
of primary tenocytes to AgNPs and the pro-
duction of extracellular matrix compo-
nents.''? An earlier study reported that a
polylactic-co-glycolic acid nanofiber-based
scaffold system showed potential for func-
tional human rotator cuff repair.'®
Nanoparticles can also be used as combina-
tion therapies. For example, Zhou et al.
delivered a gene therapy to modulate gene
expression, enhancing tendon healing and
decreasing adhesions. The researchers
transfected disrupted digital flexor tendon
tenocytes with miRNA plasmids complexed
with polylactic-co-glycolic acid [nanopar-
ticles to form nanoparticle/ TGF-f1
miRNA plasmid (nanoparticle/plasmid)],
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with improved efficiency.® Thus, nanotech-
nology remains a pivotal partner of tendon
augmentation technology.

3D and 4D printing/additive
manufacturing (AM) in tendon/ligament
augmentation

AM, loosely called 3D printing, is a
computer-assisted fabricating technique
that uses precise geometry and computer-
aided design to produce structures with
complex geometries in a wide variety of
fields. This involves the controlled deposi-
tion of a binder material laid on a powder
layer using various AM techniques, such as
inkjet printing and laser sintering, to pro-
duce constructs of complex geome-
try 82113114 Bioprinting is a method of
AM that combines and assembles biomate-
rials, bioactive molecules, and cells to
generate complex tissue-engineered struc-
tures.''® This technique has been widely
used in TERM studies, and its application
holds tremendous hope in designing and
bio-fabricating organs of complex shapes
and microstructures with a high degree of
automation, low production cost, high
speed and volume, good accuracy, and
reproducibility.**!'"*> Bioprinting has been
applied in the manufacturing of various
organs and tissues in vitro, including vascu-
lar tissues, skin, liver, neural tissue, heart,
kidney, cartilage, bone, and skeletal
muscles.' 1618

Although there are extremely few studies
on tendon 3D bioprinting, Merceron et al.
managed to bioprint a 3D complex muscle-
tendon unit structure using 3D integrated
organ printing technology in vitro.”> In
another rabbit model, 3D desktop printers
were used to print an anterior cruciate lig-
ament surgical implant. After 4 and 12
weeks, an in vivo assessment of rabbit ante-
rior cruciate ligament models showed that
the scaffold was full of MSCs and displayed
significant bone ingrowth and bone-graft

interface formation within the bone
tunnel.''” Moreover, in an in vivo porcine
study, Zhang et al. investigated mechanical
and biological properties, fabrication meth-
ods for ligament-bone composite scaffolds,
and problems between 3D printed ligament
grafts and host bones in ligament recon-
struction surgery using ligament-bone com-
posite scaffolds. The team concluded that
ligament-bone composite scaffolds estab-
lished using the 3D printing technique
accelerated the regeneration of the
biomimetic ligament-bone interface.'*® 3D
bioprinting technology can be classified
into three sub-types: inkjet-based, laser-
assisted, and microextrusion-based
printing.”®

Extrusion-based bioprinting (also called
direct ink writing) is the most commonly
used type of 3D printing in TE applications
and is implemented by most commercially
available systems, with several distinct
advantages.”*'?! Some advantages of
this technique include high versatility,
affordability, ease of use, multiple print
heads allowing for printing multiple
materials within a single construct, print-
ability of highly viscous bioinks (30—
6 x 10'mPa s~ '), and printability of struc-
tures with high cell densities (including cell
spheroids). *"'?122 The most significant
drawback of extrusion-based bioprinting is
that cell viability and functions are reduced
as cells are exposed to shear stress when
passing through the nozzle and pressure
while in the syringe before extrusion.'*® In
addition, this method has a relatively lower
printing speed and resolution, which is
highly dependent on setup. Extrusion-
based bioprinting has three sub-systems
(pneumatic, piston, and screw driven),
which makes it versatile and compatible
with some hydrogels, including alginate,
gelatin, chitosan, hyaluronic acid, Pluronic
F-127, and polyethylene glycol.!?*!°

Inkjet and laser-assisted techniques have
tremendous resolutions and cell viabilities.
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Inkjet bioprinting is fast and cheap and has
diverse applicability for different types of
materials. Disadvantages of the inkjet tech-
nique include limitations to bioinks with a
viscosity of 3.5 to 12 mPa s~ ' and low cell
density (<10° cells mL~").?” Laser-assisted
bioprinting is a complex and expensive
system with a high degree of precision and
resolution that can print a high cell density
(~10% cells mL™"). However, it is a fast-
printing system with high applicability in
the micropatterning of cells and biomolecules
because of its high printing resolution.'*®

Stereolithography (including digital light
processing) is a complex system with high
applicability in multi-material bioprinting,
resolution of bioprinting (~1 pm), and cell
viability (>85%). It is equivalent to extru-
sion bioprinting in these areas but requires
a large number of cells as the entire bath
volume must be filled.'?' Stereolithography
has high printing costs and is restricted to
only photo-cross-linkable materials, a
single bioink per construct, and a uniformity
(both density and distribution of phenotype)
of included cells.?”-'?!125

Process of 3D tendon bioprinting. The process
of bioprinting (Figure 1) begins with data

Data Material
acquisition selection
_ ¢(bioink) cells,
(]
X-ray, cothUtEd growth factors,
tomography . hydrogels
(CT), magnetic
resonance
imaging (MRI),
N\ N

acquisition, during which 3D models are
acquired indirectly using X-ray, computed
tomography, and magnetic resonance imag-
ing techniques to scan and reconstruct or
directly using computer-aided design soft-
ware. Then, bioinks are carefully selected
to guarantee biocompatibility, printability,
and mechanical properties. The appropriate
configuration of printing parameters needs
to be confirmed before bioprinting. Finally,
after printing, the implanted cells should
create bonds and generate some structures
and functions of the natural tissue/organ
through physical and chemical stimulation
of the target (receptors/signals).'*>

If 3D bioprinting can create cadaveric
tendons, then it is reasonable to think that
4D bioprinting will create “living” tendons
owing to automation. While 3D printing
still offers more futuristic approaches, its
fundamental principle faces the limitation
of producing only static, non-animating
constructs that lack time-dependent dimen-
sions and ultimately fail to mimic dynamic
human tissues.'?”"'?® In contrast, 4D bio-
printing uses smart materials that exhibit
changes in physical or chemical properties
in a controlled and functional manner upon
exposure to an external stimulus, such as

Functionalizati

Bioprinting
on

)
e appropriate edispersed cells
configuration forming

of connections and
generating some

[PITE functions of

parameters retuEl

needs to be tissue/organ

confirmed. through physical
and chemical
stimulation is
the target.

Figure |. lllustrating the stages involved in the process of tendon bioprinting.
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heat, moisture, light, magnetic field, or
pH.'* Moreover, unlike 3D, 4D printed
constructs have the five following unique
properties: '3

(i) Shape memory: material changes into
a predefined shape in response to an
external stimulus

(i1) Self-assembly: exposure to external
stimulus induces the folding of chains
and assembly into a preprogrammed
shape

(iii) Self-actuating: automated actuation of
material upon exposure to an external
stimulus

(iv) Self-sensing: material detects and
quantifies the exerted external stimuli

(v) Self-healing: damage caused in the
structure is repaired without any exter-
nal intervention

4D printing in orthopedics is still rare. In
2018, Haleem et al."*! postulated the poten-
tial application of 4D printing in construct-
ing smart orthopedic 3D implants, smart
multi-material printing of organs, and
tissue printing. Undoubtedly, 4D bioprint-
ing technology will lead to the development
of the orthopedic specialty “smart
orthopedics,” which will revolutionize the
management of spinal deformities, fracture
fixation, joint injuries, cartilage constructs,
knee replacements, and other related ortho-
pedic applications.'?*'** Unfortunately, we
did not find in vitro, in vivo, or clinical
research on 4D bioprinted constructs for
tendon augmentation.

Challenges faced in translational tendon research
and possible solutions. The first challenge of
tendon TE is the lack of adequate transla-
tional research that enhances multidiscipli-
nary collaboration among laboratory and
clinical researchers and integrates the inno-
vative desires of the general public
(patients) to form high-quality medical
practices.'** Figure 2 describes the process

of translational medicine in tendon
research.

Translational research can be divided
into five levels (T0-T4), where TO resembles
the conceptual and basic research stage, T1
shapes and provides improved ideas from
basic research through early investigations
in humans, and T2 encompasses the crea-
tion of effective human and clinical guide-
lines."** Finally, T3 involves translating the
research to practice, while T4 emphasizes
outcomes and effectiveness analysis in
populations.'¥>:13¢

The challenges in the production of com-
mercial products in TERM are stage relat-
ed. First, the broad diversity of TERM as a
research field presents an administrative
challenge at translational stage TO as some
projects may require skills from various dis-
ciplines. This fundamental barrier feeds sec-
ondarily into problems encountered in
laboratory studies, such as a lack of
proper manipulation and appropriate
acquisition of research material (cells, cell
source, scaffold materials, nanoparticles,
vectors, and bioreactors)."*” In vitrojin
vivo studies (T0-T2) on cell therapy may
indicate challenges in the lack of specific
and reliable markers that can label
tendon-derived stem cells (TDSCs) in vitro
and tendon stem cells in situ, posing a prob-
lem in cell source identification, cell isola-
tion procedures, and cell culture marker
expression. This makes it difficult to fully
understand the functions of TDSCs.'?%1%°
The lack of sufficient human subjects
willing to volunteer in clinical trials affects
T1 to T3.

Although 3D bioprinted tendons are
promising (T0-T1), considerable work is
still expected both in vivo and in vitro. The
technology faces challenges in bioprinting
resolution, bioprinting speed (especially
for vascular structures), and scaling up to
large-scale cell-based therapies because of
limited oxygen and nutrient supply to the
innermost parts of the bioprinted structures
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Process of translational research in tendon augmentation

TO

Translation to humans
* Proof of concepts
* Phasel clinical trials T1
* Novel methods of diagnosis,
treatment and prevention

Translation to practice T3
* Phase 4 clinical trials and outcome

research
* Delivery of care to right patients

T4

Basic Science Research / concepts

*  Additive Manufacturing 3D/4D Printing
Nanotechnology, Scaffolding material,
Gene therapy, Cell therapy, signals
Preclinical and animal studies
Mechanisms and targets

Translation to patients
* Phase 2 and 3 Clinical trials
* Controlled studies

Translation to community

. Population level outcomes research
*  Realizing true benefit to society

. Commercialization of products

Figure 2. Process of translational research in tendon augmentation. TO to T2 are the translational stages
from basic science to human studies. T2 to T4 represent the translation of new data into clinic and health

decision making.

and efficient waste product elimination.
However, Ramos and Moroni believe
that perfusable branched systems with
smaller microvessels can help bypass this
bottleneck.'"?

Currently, 4D bioprinting is largely con-
ceptual (TO) in general, and it is not yet
widely applied in orthopedics. There are
very few laboratory studies and clinical
studies on 4D printing smart orthopedics
worldwide. More orthopedic research is
needed in this area at all levels. The
number of in vitro/in vivo studies (T0-T4)
on tendon augmentation is generally limit-
ed, and there are even fewer clinical trials,
indicating the slow translation of research
knowledge to therapeutic products and
making the evaluation of available thera-
peutic options difficult.?*'*” This situation
is both caused by and results in ineffective

therapeutics, mainly because the fundamen-
tal mechanisms that underlie the pathogen-
esis of tendon injuries and impaired healing
are not well understood.”’ More research
funding and interdisciplinary scientific col-
laborations are key in TERM research TO
to T4 translation.

Commercially available scaffolds  products.

Commercial products are the final output
of tendon TERM research (T0-T4). The
ultimate  product quality determines
market demand' and directly affects the
research translation cycle (T0-T4) efficien-
cy. Numerous biological and synthetic scaf-
folds have been developed and approved by
various regulatory bodies globally, and
a few studies have investigated their prop-
erties.'*'*" In general, the mechanical and
biocompatibility properties of commercially
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available products require improvements
and new approaches, as discussed in the
paper. Table 5 shows a list of the most
widely used biologics that are commercially
available for tendon scaffolds. Table 6
shows a list of the most widely used non-
biologics that are commercially available
for tendon scaffolds.

Citation
14

14

14

141

141

141

Regulatory approval

FDA
Canada, Europe
Canada,
Europe, FDA
FDA
FDA

A
Canada,
Europe, FDA

FD.

Recommendations and future studies. The
future of tendon augmentation in TE lies
in the strong integration of various disci-
plines to translate ideas into research, fol-
lowed by actual therapeutics. Although
research is still limited in tendon augmenta-
tion, considerable work has been conducted
on stem cell biology and functional scaffold
materials. These two fields require more
clinical trials to improve the available
knowledge of current materials. The fields
of nanotechnology and 3D/4D bioprinting
are key to the future development of TE
and tendons in particular'® and require
more attention.

Future researchers should focus more on
combined approaches among cell therapy,
growth factors, gene therapy, nanotechnol-
ogy, and AM. A good example is Zhou
et al., who used gene-modified sutures
loaded with nanoparticles to form nanopar-
ticle/plasmid complexes to promote tendon
healing. The outcomes reported by Zhou
et al. were superior tendon healing
strengths, enhanced gliding function, and
inhibited adhesion formation without
adverse effects on host tissues.”> In our
review, we found limited research on 3D/
4D bioprinting in orthopedics and very
few studies on tendon augmentation.
Therefore, the authors recommend that
future studies should focus on applying
3D/4D bioprinting technologies in orthope-
dics, especially tendon augmentation, as
they hold tremendous potential.

P4HB with type | bovine collagen, Leno weave

Synthetic-absorbable
polyurethane urea

PLLA from multilayer woven mesh
polymer

Polyester ethylene terephthalate
P4HB

Polytetrafluoroethylene
Polyethylene polyester

Source
Terephthalic

JK Orthomedic Ltd, Quebec, Canada
Xiros plc, Neoligaments, Leeds, UK
Yufu Itonaga Co. Ltd, Tokyo, Japan

Synthasome

Reconstruction System, Dijon, France
Tornier

WL Gore and Associates, USA
Ligament Augmentation and
Artimplant AB, Sweden

Biomet Sports Medicine, IN, USA

Company

Table 6. List of most widely used non-biologics commercially available for tendon scaffolds.

Poly-4-hydroxybut (P4HB), poly-I-lactic acid (PLLA), Food and Drug Administration (FDA).

Leeds—Keio® or Poly-tape
Artelon ® and Sportmesh

Product
Gore-Tex TM
Lars ligament
X-Repair
Biofiber
Biofiber-CM
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Conclusion

We are presented with an increasing global
prevalence of tendon pathologies, especial-
ly among manual laborers, the sporting
community, and the elderly. However,
considerable improvements in techniques
of tendon repair in the past decades have
not led to clinically significant progress,
partly because tendons are poorly per-
fused, heal slowly, and frequently form
scar tissue. These and other factors have
led to a high failure rate of treatments,
joint stiffness, morbidity, and cost burden
for patients. The current tendon TE scaf-
folds (synthetic, biologic, or composites)
on the market are static and non-
animating, lacking the time-dependent
dimensions and failing to mimic the
dynamic tissue environment and biome-
chanical forces required to promote opti-
mal tenogenic differentiation for
endogenous repair and regeneration. In
the future, new strategies, such as 3D/4D
bioprinting, may provide a rapid and
promising solution for the production of
smart tendon/ligament scaffolds with self
in vivo regulation in response to stimuli,
animating ability, and self-healing. This
would lead to the development of smart
orthopedics. This narrative review reported
some successful laboratory studies on cell
therapy, scaffolds, 3D/4D bioprinting,
gene therapy, cell signals, or their combi-
nation. To successfully develop more
tendon  augmentation  therapies via
TERM approaches, further research and
clinical trial investigations are needed.
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